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Band Edge Behavior of the Integrated Density of
States of Random Jacob! Matrices in Dimension 1

Frederic Klopp1
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Let H be a Jacobi matrix acting on / 2 (Z ) and Va a random potential of
Anderson type. Let Hai = HJr Va. We give a general formula relating the decay
of the integrated density of states of H^ at the edges of the almost sure spectrum
of Hw to the decay of the integrated density of states of H at the edges of the
spectrum of H.

KEY WORDS: Random Jacobi matrices; integrated density of states; Lifshitz
tails.

0. THE MAIN THEOREM

Let H be a translational invariant Jacobi matrix with exponential off-
diagonal decay that is H=((hk_k.})k^k.el such that,

• h_k = hk for ke 1 and for some k^0, hk=£Q.

• there exists C > 0 such that, for k e Z,

H defines a bounded self-adjoint operator on /2(2). Using the Fourier
transform, it is easily seen that H is unitarily equivalent to the multiplica-
tion by the function di-*h(0) defined by
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acting as an operator on L2([ — n , n ] ) (here and in the rest of the paper,
we identify the function L2 over an interval / with the functions that are
locally L2 and periodic of period the length of the interval /; moreover the
L2-norm is normalized so that the constant function 1 has norm 1).

The spectrum of H is a = h(\_ — n, n}) = [e~, e + ]. We can define the
integrated density of states of H and compute

where fj. denotes the Lebesgue measure on [ — n , n ] (see, e.g., ref. 4).
Let Vw be a diagonal matrix with entries that are independent identically

distributed bounded real valued random variables denoted by (co^) f t e Z . Let
S be the essential support of the common law of the (Ok)kez- Then we can
write S=(jj£j Ij where

• J is an ordered set of indices,

• Ij is the interval [cor, coy
+ ]

• for (j, j') eJ2, if j< j' then coy~ ^(u+ <coyT ^c^t.

We assume that the (a)k)kEf are bounded and that their common law does
not decay exponentially at the edges of its support; more precisely, for any
jeJ, it satisfies

Set HCO = H+ Vm; then Hm defines a bounded ergodic random Jacobi
matrix. We denote its almost sure spectrum by 27 and its integrated density
of states by N(E). Then, a s 2 7 = [ < ? ~ , < ? + ] + S' (see, e.g., refs. 4 and 13), we
can write 27=(Jp= i [E~,E + ] where the real numbers (E~, Ep)l<psip
satisfy E-<E;<E-^<E^,. The (E-)l<p^P (resp. (£,+ ) 1 < S p < / 0 will
be called left or lower (resp. right or upper) spectral edges.

Then we have

Theorem 0.1. Under the assumptions made above on Hm, for
\ ^p^P, we have

This result calls for some remarks. If H is the discrete Laplace
operator then this result is well known even in dimension larger than 1 or
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for continuous operators (at least at the exterior edges of the spectrum)
(see, e.g., refs. 10, 12, 15, and 16 for more references). The main novelty
here is that we allow a general class of Jacobi matrices as the kinetic energy
of the hamiltonian.

The asymptotic behaviour of the integrated density of states of H near
the spectral edges is easy to compute; near the infimum of a, we get that

for some a > 0 and p> 0. An analogous statement holds near the
supremum of a. So that our main theorem says that the integrated density
of states of the random operator exhibits a Lifshits tail at its spectral edges.
And that the Lifshits exponent is given by the integrated density of states
of the underlying operator. By what is known up to now, it seems
reasonable to conjecture that the same statement is true for discrete
operators in higher dimensions as well as for random Anderson perturba-
tions of periodic Schrodinger operators on L2(Ud) (see ref. 9).

The strategy of the proof goes as follows: we first prove that N is well
approximated by the expectation value of the integrated density of states of
some periodic realisations of Hm (see Theorem 1.1). We then only need to
estimate the integrated density of states of these realisations. The lower
bound is obtained by exhibiting an eigenvalue in the relevant energy range
for a sufficiently large set of a>. To get the upper bound, we need to under-
stand the Fourier transform of a function localised near h ~ l ( { e ± } ) . There-
fore we use Lemma 3.1.

The fact that 8i->h(8) is real analytic is not of crucial importance.
What really matters (to have our method of proof work) is the structure
of the set of extremal points of h (and the way h reaches its extremal
values). It happens that this structure is extremely simple for analytic
functions of one variable. One could imagine to use the same method of
proof to get general results about the band edge behaviour for random
Schrodinger operators in higher dimension/9' One of the main obstacles
would then be the complicated structure of the set of extremal points of h
(even if h is analytic). In this case, it is not clear what is the analogue of
Lemma 3.1. In general, even to get the band edge asymptotic behaviour of
n(E] is a non-trivial matter (cf. ref. 3 and references therein). In higher
dimension, if we assume that the set of extremal points of h consists only
of isolated points, our strategy of proof should work. In particular, under
this assumption, one should be able to prove that the integrated density of
states decays exponentially at the band edges.
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If h is not analytic but does not behave too wildly at its extremal
points, one can always upper and lower bound it by analytic (or Gevrey
class) functions that behave in the same nice way as h. And then perform
our analysis on the random hamiltonians generated by these new kinetic
energies. This allows us to generalize our result to kinetic energies that do
not decrease exponentially off-diagonally.

One could also generalize this study to more general random poten-
tials, for example long range potentials (i.e., with slower decay).

1. PERIODIC APPROXIMATIONS

We will first prove an approximation theorem for the density of states
of Hm. Let ((Uj)j-eZ be a realisation of the random variables defined above.
Fix ne N*. We define the following periodic operator acting on /2(Z)

where Z2 n + , = Z/(2n + 1) Z, 6, = (<)",•/),• eZ (6j, is the Kronecker symbol) and
| w > < « is the orthogonal projection on w a unit vector.

For the Hn
m, we can define an integrated density of states denoted

by N"m (e.g., ref. 14); it is a non-decreasing function that satisfies, for
?6<<C(R),

Then, we have the

Lemma 1.1. There exists C> 1 such that, for ( p e ^ ^ ( K ) , for ke N
and n e N*, we have

Proof. The proof follows the lines of the proof of Theorem 5.1 in
ref. 10. For the reader's convenience, we reproduce it here. We know (see
refs. 4 or 13) that
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Averaging (5) and using the fact that the random variables (ojj)je2 are i.i.d
and the translation invariance of //, we get

So that we want to estimate <<$„, q>(H"m) <50> - <<$„, <?(//„) <50>. Therefore
we will use Helffer-Sjostrand's formula1" that reads

where q> is an almost analytic extension of <p (see ref. 11).
So we get that

where z = .v + iy and [ k ] n = k mod (2n + 1) (the representant being chosen
in [ —n, «]).

By a Combes-Thomas argument (e.g., ref. 1), we know that there
exists C> 1 such that, uniformly in (w,)y£Z and n^\, we have, for
Im(z)^0,

Hence (8) gives for some C> 1,

Remark 1.1. The proof of Lemma l.l is dimension independent
(see ref. 10) and holds for a large class of random operators. We essentially
only used the self-adjointness and the off-diagonal exponential fall-off of
the Green's kernel at complex energies.

Taking into account the properties of almost analytic extensions (cf.
ref. 11), we get the announced lemma.
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If (f> is supported in a open interval / where we have localization in the
Aizenman-Molchanov sense (see refs. 1 and 2) then we can choose q> sup-
ported in a domain D such that for some C > 1 and z e D in that domain,
we have

The estimate given by Lemma 1.1 can then be improved.

As an immediate consequence of Lemma 1.1, we get that E(dN^) con-
verges vaguely to dN. Hence, a classical argument tells us that, except for
an at most countable set of energies, N", converges to N.

The main purpose of Lemma 1.1 is to show that, for £>0 small,
N(E + e)-N(E-e) is well approximated by E(N"m(E + s) -N^E-s))
even when n is only of polynomial size in s~1. More precisely let q> be a
Gevrey class function of Gevrey exponent oc> 1 (see ref. 7); assume
moreover that (p has compact support in ( — 2, 2), that 0 ^ q> < 1 and that
<p=l on [ — 1,1]. Let E0e R and set

Then by Lemma 1.1 and the Gevrey estimates on the derivatives of g>, we
get that there exist C> 1 such that, for « ̂  1, k ^ 1 and 0 < E < I, we have

We can now optimize the right hand side of the above equation in k and
get that, there exist C> 1 such that, for n ̂  1 and 0 < e < 1, we have

Now if we choose n e =[e 1 v] (where [•] is the entire part of • and
77 > 0), we get that there exist £0 > 0 such that for 0 < s < e0, we have

By the definition of (p, as dNnm and dN are positive measures, we have
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This gives that for 0 < s < e0/2 we have

If we want to measure exponential decay for N near the band edges, we just
have to measure the same exponential decay for E(A^) (where ne is chosen
as above). This means that when estimating E(N^) the number of eigen-
values (i.e., Floquet eigenvalues) of H% in [E0 — e, E0 + s~] will only be
polynomial in e"1; thus it will not be really important for the exponentially
small quantity we want to measure. As in the more classical schemes used
to prove Lifshits tails (refs. 8, 15, etc.), the double logarithm of the
integrated density of states will be well estimated by the double logarithm
of the probability to have spectrum in the interval [E0 — s, E0 + s] for the
approximation operator H*.

To prove Theorem 0.1, in the case of a lower spectral edge, we take
E0 = E~ so that, for any admissible co, N(E~ — s) = N^(E^ —s) is inde-
pendent of e > 0 small enough. Then, if we take rj > 0 large enough so that
t]/(2a.)> p (where p is given by Eq. (4)), to get Theorem 0.1, by (9), we just
have to show that

This is the purpose of the next section.

2. THE PROOF OF THEOREM 0.1

We will show a lower and an upper bound for the double logarithm
of the integrated density of states. The case of the upper edges being dealt
with in the same way, we will only give the proof for lower edges of the
spectrum.

Let E~ be a lower edge of 27. As Z = [ e ~, e+ ] + S, there exists a
unique jp e J such that E~ = a>~ +e~ and such that there exists d > 0 such
that forj'<jp, we have co,- + e+ — S^E~ (see ref. 13). To simplify the
notations, without restricting our purpose, we will assume that e~ =
Co' =0. So that E- =0.

Let us shortly describe the critical set Z = /z~'({0}). As h is analytic
and not identically 0, Z consists in a finite number of points, i.e., Z =

822/90/3-4-27
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This immediately tells us that

where

2.1. Some Floquet Theory

To analyse H"}, we will need some Floquet theory that we develop
now. We denote by 3F'. L2([ — n, n~\) ->/2(Z) the usual Fourier series
transform. Then, we have, for u e L2( [ — n, n ]),

where

Define the unitary equivalence U; L2([ — n, n]) -> L2([ — n/(2n + 1),
7i/(2« + l)])®/2(Z2M + 1) by (Uu}(9) = (uk(B)}ke^+! where the
(»*(0)Uez2n+, are defined by

Then, for n>\, we compute U^*H^,^U* and get that it is the multi-
plication by the matrix M"a(9} = ((hj_r(0) + o)j8jj,))Utj.)eZi + acting on
L2([-7r/(2«+l), 7r/(2« + l)])(g)/2(/2 n + i); here the functions' (^)*eZ2n+1

are the components of h decomposed according to (13).

{6jl 1 ̂ j^m} and for any 1 ̂ ys£w, there exists (p}, a;) e N* x (0, +co)
such that

and
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This immediately gives us that the Floquet eigenvalues and eigen-
vectors of Hn

m with Floquet quasi-momentum 6 (i.e., the solutions of the
problem

are nothing but the eigenvalues and eigenvectors (continued quasi periodi-
cally) of the (2n + 1) x (In + 1) matrix Mn

m(0}. This gives us that, for e > 0,

Notice that, as //„ has no spectrum in [ — £, 0) for e>0 small enough, we
know that for any n >0 and almost all ca, M^B) also has no spectrum in
[ -£, 0) (cf. refs. 4 and 13); so that

Considering H as being 2n + 1-periodic on Z, we get that the Floquet eigen-
values of H (for the quasi-momentum 6) are (h(8 + 2nk/(2n + l ) ) ) t 6 z 2 B + 1

each of them being associated with the vector (uk(0))ke22,+l having com-
ponents

In the sequel, the vectors will be given by their components in this basis.
So that if we denote the vectors of the canonical basis by (i>/(0)) jez, ,,

2/i + \

their components will be

We define the vectors (y/) / sz 2 n + 1 by
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2.2. The Lower Bound

By (14) and (10), for |0| < n/(2n + 1) we just need to prove the right
lower bound for the probability that M^($) has an eigenvalue in [ — e, e].
We will do this by explicitly constructing such an eigenvalue for a suf-
ficiently large set of CD'S.

Let ae/2(/2n + i) be expressed by its coordinates in the basis
(uk(0))kei^ i-e., a = ̂ keZ2n+iakuk(6). Then

where

On A,, we perform q discrete integration by parts (ge M) that is

Pick a function ae^((-l/2, l/2))cL2([-1/2, 1/2]) and set the com-
ponents of the vector v defined above to be ak = (l/x/2n + 1) a(k/(2n + 1)).
Then

Let ae^((-l/4, l/4))cL2([-1/2, 1/2]), a non negative such that
l |f l | l i2(t-i /2,i /2]) = I- Pick C>1 a constant. Set a\-} = (Cs)-l/2p x
^((Cfi)"1^• — #())) and n = ne = [s"1~'!~l where ?/ is chosen as above large
enough and 6>0 is a point in Z that gives a main contribution to (12).

where So that
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We define the a\ as above; using Riemann sums and the fact that
II «1/.'a-1/2, i/2]> = llalli2([-i/2,i/2]) = 1- we compute

As h(6)^ai(8-60)
p for 0 close to 00> we get that

if C is large enough and e small enough.
Set Le = [e~1/p~v], here v will be chosen small. The second term in the

right hand side of (15) can be split into

To deal with O+, as the o> are bounded, we use the integration by parts
(16) to get

so that for q large enough depending v, p and C, we get, for £ small
enough,

Now, if we choose \ca/\ <e/3 for |/| <L£ then, by (17),

for e small enough.
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Adding this last equation to (18) and (19), we get that, if \to, sJf,/3 for
|/|4Le, then

Hence, for s small enough,

Using (9), taking the log log, dividing by log£ and taking the limit e-> 0,
we get

This holds for any v > 0 hence gives the expected lower bound.

2.3. The Upper Bound

Using (14) and Fubini's theorem, we have

where £2e(0) is the event {there exists an eigenvalue of M%(0) in [ — fi, s ] } .
So, if we choose Ne to be a polynomial (of sufficiently large degree) in e~',
we just have to upper bound the probability of Qe(ff) uniformly in 9. To
do this we will first estimate this event by an analogous event for a new
random operator that is non-negative. The gain will then be that we will
be working at the bottom of the spectrum of this new operator. To do this
we follow the ideas developed in Section 5.3 of ref. 10.

For / e [ 0 , l ] , the random operator tH+VU) has an almost sure
spectrum denoted by 27,. Then, for /e[0, 1], 27,<=27 (as a = [0, e + ] ) . So
that for g>0 small enough, 27, n [ — e, 0) = 0. Hence, for any «>1,
fle [ -7i/(2n + 1), n/(2n + 1)] and almost all w, M"(a(t, 0) has no spectrum
in [-£, 0) (here M"Jt,d) is the matrix ((thj^r(0) + <ajSjr))Ut/)eZ^+1

associated to lff+ Vm). Thus we get that, for e>0 small enough,
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Let 77* (resp. UU1) be the orthogonal projector on the sites k such
that o)/ t<0 (resp. on the sites k such that w A r < 0 ) that is 77* =
Zfcez2 n + , , ( U ; t>ol<5ArX<y and 77- =Zfc S z ? n + 1 , r a t <o l^><^l (acting on
/2(Z2n + i)). Then using the minimax principle (see Lemma 5.3 in ref. 10),
we get that, co almost surely,

where 77 + ̂ /^(0)77 + is acting on 77+(/2(Z2 n + 1)) and the multiplicity of
the eigenvalues is counted on this space. Define a set of new random
variables (mk)kel as follows

Notice that the random variables (<Z>k)ke2 and (wk}ke^ have the same law
near 0. Moreover the (&k)k£l have a positive expectation.

Then, if we define M"a(0) = ((hj_r(6) + &j$jr)}u / ) 6Z2 ,, we have
77 + M"(0) /7+=/7 + Af - (0 ) /7 + . Thus, by (22), we get that, co almost
surely

(here the eigenvalues of n + Mn&(6}n+ are counted (with their multipli-
city) for the operator considered as acting on 77+(/2(Z2n + 1 ) ) ) .

We define V& to be the diagonal matrix having the (<ak)k€Z as
diagonal entries and ff& = H+ V&, Then M"&(6) is associated to H& in the
same way as M"w(d) is associated to Hw. Notice that H& is non-negative
and has 0 in its almost sure spectrum.

So we now only need to estimate the probability of the event
&e(6) = {there exists an eigenvalue of M%(6) less than e}. To simplify the
notations, we will forget about the superscript ~ i.e., we will denote Qe(6)
by Qe(8] and & by a>.

We recall that Z = /!~'({0}) = (0,,..., 8m] and that p is the largest of
the orders of these zeroes of h. For rj > 0 and \/p > 2v > 0, define
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(where [ • ]„ denotes the largest odd integer smaller than •}.
Then we have the

Lemma 2.1. For any 1 > < 5 > 0 and any l / p > 2 v > 0 , there exists
e0 > 0 such that, for 0 < s < e0, we have, for \0\ ̂  n/(2Ns + I),

where, for 1 ^ j<j' =Sw and \k'\ ^K'e, we define the events

Before proving this lemma, let us use it to end the proof of
Theorem 0.1. Therefore we just need to estimate the probability of the
events QJs'j''k' and Qks. We pick 77>0 as in (9) and v small. The random
variables (con)ne2 are i.i.d, non-negative. Let o>>0 be their common expec-
tation value; so for Q<S<a>, by classical large deviation estimates (cf.
ref. 5), we know that, for some c>0, \k'\ ^K'e, we have

For coeQ£J"•*', as dj=£0j,, for some C>0, we have

for e small enough. The random variables (cok-(2K- + i) + r -co) ei(e> W are
independent and have expectation value 0. By classical large deviation
estimates, we get that, for some c>0,
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We add this to (24), plug it into ( 2 1 ) then into (9); we take the log log,
divide by log e and let e tend to 0 to get

But this holds for any v>0 small enough. Taking (20) into consideration,
this ends the proof of Theorem 0.1.

Proof of Lemma 2.1. To simplify the notations, we will forget about
the e subscript and set N = NE and so on. We define

Pick caeQe(0) so there exists fl = Z*:ez2n+1a*rw/t(^) such that

For 1 ̂ j^m and 9e [ — n/(2N + 1), n/(2N + 1)], we know that, for some
C > 0 and for E small enough

For 1 ^j^m, we define kj=[((2N+l)6j)/2n] and aj by

The (aj)l<J^m are pairwise orthogonal. By (25) and as VNW is non-
negative, we get that

We can then normalise £J=1 a' and get that, for some C>0 and s small
enough
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This in particular implies

We now translate each of the a' by ks so as to centre its support at 0. The
vector thus obtained we again call aj; then (27) becomes

We now apply Lemma 3.1 to each aj; observing that all the operators
involved are bounded, that m is fixed and that in our case K/K' behaves
like ev, we get that, for some C>0 and e small enough

So that

where
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Hence

If we define

So, as \\aj\\ ^2 (for e small enough by Lemma 3.1), by (28), we obtain

Pick 8 > 0. Then,

• either, for some 7V/ and k' eZ2K-+i, we have

then

• or for all./V/ and k'el.2fc + l, we have

In this case, (29) tells us that, for E small enough,

we get thatas
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As a is normalised, by (26) and Lemma 3.1, for s small enough, we
have

So that (30) implies that, for some /t'eZ2A:, + 1,

Hence a> belongs Q^mS for some k'.

As we can choose S as small as we want, this ends the proof of Lemma 2.1.

3. APPENDIX: THE KEY LEMMA

The lemma, key to our analysis, roughly says that if a is a vector in
/2(Z2Ar+i) with coefficients concentrated near 0 in a region of width K<N,
then up to a small error in /2-norm, a can be considered to have Fourier
coefficients that are constant over intervals of length N/K.

More precisely we have

Lemma 3.1. Assume TV, L, K, K' L' are positive integers such that

2N + 1 = (2K+ 1 )(2L + 1) = (2K1 + 1 )(2L' + 1) such

K<K' and L' <L.

Pick a = (an)neZ2N+ie/?2(Z2N+i) such that,

for \n\>K, an = Q

Then there exists ae£2(Z2N+i) such that

1. \\a~a\\^Z2N+i)^C^K, ||a||,2(Z2jv+i) where CK<IC ^KIK,^0nKjK'.

2. for /' e Z2Z/ +1 and k' e ~L2K> +1 > we have

Remark 3.1. One can prove an analogous statement for the usual
Fourier transform for a function supported in a small interval in R.



Obviously,

sup

and

• for l'eZ2L, + l, D1' is the (2K1 + 1) x (2K' + 1) diagonal matrix
(acting on /2(/2JC'-)-i)) with tne diagonal entries

where

« a is seen as an element of/ (Z2A- + i)

• (v%')*-ez K. , is tne orthonormal basis of/2(Z2/ r + J defined by
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Proof. By definition, for m e J.2N+,,

We decompose m = l' +k'(2L' + 1) where &'eZ2/i., + , and /'eZ2Z.. + 1 so
that
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We define

where [«]/,- = n mod (2L + 1). Then a satisfies Lemma 3.1. Indeed as the
(y«)«ez f°rm an orthonormal basis of /2(Z2N+l), point 2 is obvious by
the definition of a. Let us check point 1; we compute

This ends the proof of Lemma 3.1.
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